Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Pharmaceutics ; 16(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399315

ABSTRACT

Type 2 diabetes mellitus (DM) continues to escalate, necessitating innovative therapeutic approaches that target distinct pathways and address DM complications. Flavonoids have been shown to possess several pharmacological activities that are important for DM. This study aimed to evaluate the in vivo effects of the flavonoid melanoxetin using Goto-Kakizaki rats. Over a period of 14 days, melanoxetin was administered subcutaneously to investigate its antioxidant, anti-inflammatory, and antidiabetic properties. The results show that melanoxetin reduced insulin resistance in adipose tissue by targeting protein tyrosine phosphatase 1B. Additionally, melanoxetin counteracted oxidative stress by reducing nitrotyrosine levels and modulating superoxide dismutase 1 and hemeoxygenase in adipose tissue and decreasing methylglyoxal-derived hydroimidazolone (MG-H1), a key advanced glycation end product (AGE) implicated in DM-related complications. Moreover, the glyoxalase 1 expression decreased in both the liver and the heart, correlating with reduced AGE levels, particularly MG-H1 in the heart. Melanoxetin also demonstrated anti-inflammatory effects by reducing serum prostaglandin E2 levels, and increasing the antioxidant status of the aorta wall through enhanced acetylcholine-dependent relaxation in the presence of ascorbic acid. These findings provide valuable insights into melanoxetin's therapeutic potential in targeting multiple pathways involved in type 2 DM, particularly in mitigating oxidative stress and glycation.

2.
Arch Toxicol ; 98(1): 95-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964100

ABSTRACT

Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Parkinson Disease , Humans , Aged , Inflammation , Aging
3.
Med Res Rev ; 44(2): 497-538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37602483

ABSTRACT

Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Flavonoids , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Quality of Life , Arthritis, Rheumatoid/drug therapy , Inflammation
4.
Data Brief ; 51: 109673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37876742

ABSTRACT

Toxicological analysis of the effects of natural compounds is frequently mandated to assess their safety. In addition to more simple in vitro cellular systems, more complex biological systems can be used to evaluate toxicity. This dataset is comprised of bright-field microscopy images of chicken-embryo blood cells, a complex biological model that recapitulates several features found in human organisms, including circulation in blood stream and biodistribution to different organs. In the presented collection of blood smear images, cells were exposed to the flavonoid quercetin, and the two mutagens methyl methanesulfonate (MMS) and cadmium chloride (CdCl2). In ovo models offer a unique opportunity to investigate the effects of various substances, pathogens, or cancer treatments on developing embryos, providing valuable insights into potential risks and therapeutic strategies. In toxicology, in ovo models allow for early detection of harmful compounds and their impact on embryonic development, aiding in the assessment of environmental hazards. In immunology, these models offer a controlled system to explore the developing immune responses and the interaction between pathogens and host defenses. Additionally, in ovo models are instrumental in oncology research as they enable the study of tumor development and response to therapies in a dynamic, rapidly developing environment. Thus, these versatile models play a crucial role in advancing our understanding of complex biological processes and guiding the development of safer therapeutics and interventions. The data presented here can aid in understanding the potential toxic effects of these substances on hematopoiesis and the overall health of the developing organism. Moreover, the large dataset of blood smear images can serve as a resource for training machine learning algorithms to automatically detect and classify blood cells, provided that specific optimized conditions such as image magnification and background light are maintained for comparison. This can lead to the development of automated tools for blood cell analysis, which can be useful in research. Moreover, the data is amenable to the use as teaching and learning resource for histology and developmental biology.

5.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685929

ABSTRACT

Long-term cognitive dysfunction, or "chemobrain", has been observed in cancer patients treated with chemotherapy. Mitoxantrone (MTX) is a topoisomerase II inhibitor that binds and intercalates with DNA, being used in the treatment of several cancers and multiple sclerosis. Although MTX can induce chemobrain, its neurotoxic mechanisms are poorly studied. This work aimed to identify the adverse outcome pathways (AOPs) activated in the brain upon the use of a clinically relevant cumulative dose of MTX. Three-month-old male CD-1 mice were given a biweekly intraperitoneal administration of MTX over the course of three weeks until reaching a total cumulative dose of 6 mg/kg. Controls were given sterile saline in the same schedule. Two weeks after the last administration, the mice were euthanized and their brains removed. The left brain hemisphere was used for targeted profiling of the metabolism of glutathione and the right hemisphere for an untargeted metabolomics approach. The obtained results revealed that MTX treatment reduced the availability of cysteine (Cys), cysteinylglycine (CysGly), and reduced glutathione (GSH) suggesting that MTX disrupts glutathione metabolism. The untargeted approach revealed metabolic circuits of phosphatidylethanolamine, catecholamines, unsaturated fatty acids biosynthesis, and glycerolipids as relevant players in AOPs of MTX in our in vivo model. As far as we know, our study was the first to perform such a broad profiling study on pathways that could put patients given MTX at risk of cognitive deficits.


Subject(s)
Chemotherapy-Related Cognitive Impairment , Mitoxantrone , Male , Animals , Mice , Metabolomics , Glutathione , Brain , Metabolic Networks and Pathways , Lipids
6.
Antioxidants (Basel) ; 12(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37760046

ABSTRACT

Osteosarcoma (OS) is a common childhood sarcoma, and its treatment is hindered by adverse effects, chemoresistance, and recurrence. Interleukin (IL)-6 production by tumors plays a significant role in inflammation, carcinogenesis, and metastasis. This study aimed to investigate the antiproliferative potential of luteolin derivatives in OS and to evaluate interleukin production. MG-63, Saos-2, HOS, and 143B human OS cell lines were incubated with luteolin and eight derivatives containing hydroxy, chlorine, or alkyl substitutions. The cell viability and growth were evaluated in the presence of these compounds. Apoptosis was also examined through the analysis of the Bax expression and caspase-3 activity. Finally, the gossypetin effects were measured regarding the production of proinflammatory cytokines interleukin (IL)-6, IL-1ß, and IL-12p70. Our findings show that gossypetin was the most potent compound, with proliferation-suppressing activities that induced a series of critical events, including the inhibition of the cell viability and growth. Apoptosis was associated with enhanced caspase-3 activity and increased Bax expression, indicating the involvement of the intrinsic pathway of apoptosis. Moreover, pre-/co-treatment with gossypetin significantly reduced the autocrine production of proinflammatory cytokines. Further investigation is required; nevertheless, considering the link between inflammation, carcinogenesis, and metastasis in OS, our findings suggest that gossypetin exhibits anti-proliferative and anti-inflammatory properties that are potentially relevant in the clinical context.

7.
Pharmaceutics ; 15(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37631292

ABSTRACT

Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.

8.
Arch Toxicol ; 97(10): 2643-2657, 2023 10.
Article in English | MEDLINE | ID: mdl-37594589

ABSTRACT

Silver nanoparticles (AgNP) are among the most widely commercialized nanomaterials globally, with applications in medicine and the food industry. Consequently, the increased use of AgNP in the food industry has led to an unavoidable rise  in human exposure to these nanoparticles. Their widespread use raises concerns about potential hazards to human health, specifically their intestinal pro-inflammatory effects. Thus, the main objective of this study was to evaluate the biological effects of two subacute doses of 5 nm polyvinylpyrrolidone (PVP)-AgNP in C57BL/6J mice. One mg/kg body weight or 10 mg/kg bw was provided once a day for 14 days, using a new technology (HaPILLness) that allows voluntary, stress-free, and accurate oral dosing. It was observed that after oral ingestion, while AgNP is biodistributed throughout the entire organism, most of the ingested dose is excreted in the feces. The passage and accumulation of AgNP throughout the intestine instigated a prominent inflammatory response, marked by significant histological, vascular, and cellular transformations. This response was driven by the activation of the nuclear factor-кB (NF-кB) inflammatory pathway, ultimately leading to the generation of multiple cytokines and chemokines.


Subject(s)
Metal Nanoparticles , Mice , Humans , Animals , Mice, Inbred C57BL , Metal Nanoparticles/toxicity , Silver/toxicity , Tissue Distribution , Intestines
9.
Crit Rev Anal Chem ; : 1-28, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37335098

ABSTRACT

Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss.Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay.The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity.156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH.This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.

10.
Med Res Rev ; 43(6): 1878-1945, 2023 11.
Article in English | MEDLINE | ID: mdl-37147865

ABSTRACT

One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.


Subject(s)
MicroRNAs , Neoplasms , Humans , Epithelial-Mesenchymal Transition , Flavonoids/pharmacology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Neoplasms/drug therapy , Transcription Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis
11.
Pharmaceutics ; 15(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111802

ABSTRACT

Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.

12.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37101324

ABSTRACT

This study aimed to evaluate the effects of high-protein dried distillers grains (HPDDG) on palatability and metabolizable energy (ME) of the diet, apparent total tract digestibility (ATTD) of nutrients and energy, intestinal fermentation products, and fecal microbiota in dogs. Four diets containing 0, 70, 140, and 210 g/kg of HPDDG were manufactured. To evaluate the ME and the ATTD of macronutrients of HPDDG itself, an additional test diet was manufactured containing 70% of the control diet formula (0 g/kg) and 300 g/kg of HPDDG. Fifteen adult Beagle dogs were distributed in a randomized block design, with two periods of 15 d each (n = 6). The HPDDG digestibility was obtained using the Matterson substitution method. For the palatability test, 16 adult dogs were used, comparing the diets: 0 vs. 70 g/kg of HPDDG and 0 vs. 210 g/kg of HPDDG. The ATTD of HPDDG were: dry matter = 85.5%, crude protein = 91.2%, and acid-hydrolyzed ether extract = 84.6% and the ME content was 5,041.8 kcal/kg. The ATTD of macronutrients and ME of the diets and the fecal dry matter, score, pH, and ammonia of the dogs did not differ among treatments (P > 0.05). There was a linear increase in the fecal concentrations of valeric acid with the inclusion of HPDDG in the diet (P < 0.05). Streptococcus and Megamonas genera reduced linearly (P < 0.05), and Blautia, Lachnospira, Clostridiales, and Prevotella genera showed a quadratic response to the inclusion of HPDDG in the diet (P < 0.05). Alpha-diversity results showed an increase (P < 0.05) in the number of operational taxonomic units and Shannon index and a trend (P = 0.065) for a linear increase in the Chao-1 index with the dietary inclusion of HPDDG. Dogs preferred the 210 g/kg diet over the 0 g/kg HPDDG diet (P < 0.05). These results demonstrate that the HPDDG evaluated does not affect the utilization of nutrients in the diet, but it may modulate the fecal microbiome of dogs. In addition, HPDDG may contribute to diet palatability for dogs.


Considering the constant search for novel ingredients in animal nutrition and the increasing use of corn to produce ethanol, dried distillers grains with (DDGS) or without (DDG) solubles can potentially be used in dog food. Previous studies show that DDGS and DDG can contribute mainly with protein and fiber to the diets and that their fibrous fraction can potentially be fermented by the gut microbiota. However, DDGS and DDG may present variable digestibility in dogs. Besides, we did not find studies evaluating the nutritional effects of high-protein DDG (HPDDG) in dogs. This study evaluated the effects of HPDDG on diet digestibility and palatability and on variables related to the intestinal functionality of adult dogs. Our results demonstrated that HPDDG can be used in extruded diets for dogs due to its high digestibility and palatability. Besides, the HPDDG evaluated may result in a modulation of the gut microbiota, favoring bacteria considered beneficial for gut health.


Subject(s)
Diet , Digestion , Dogs , Animals , Fermentation , Feces , Diet/veterinary , Nutrients , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Zea mays/chemistry
13.
Pharmaceutics ; 15(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36986641

ABSTRACT

Rheumatoid arthritis (RA) is characterized by systemic immune and chronic inflammatory features, leading to the destruction of the joints. Presently, there are no effective drugs able to control synovitis and catabolism in the process of RA. 2-Styrylchromones (2-SC) are a small group of compounds characterized by the attachment of a styryl group to the chromone core that have already been associated to a wide range of biological activities, including antioxidant and anti-inflammatory activities. The present study investigated the effect of a set of six 2-SC on the interleukin-1ß (IL-1ß)-induced increase of nitric oxide (•NO), inducible form of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-3 (MMP-3) expression levels in human fibroblast-like synoviocytes (HFLS), pointing to the role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in the process. From a set of six 2-SC, presenting hydroxy and methoxy substituents, the one presenting two methoxy substituents at C-5 and C-7 of A ring and a catechol group on B ring, significantly reduced •NO production and the expression of its inducible synthase (iNOS). It also significantly reduced the catabolic MMP-3 protein expression. This 2-SC inhibited the NF-κB pathway by reversing the IL-1ß - induced levels of cytoplasmatic NF-kB inhibitor alpha (IκBα), and decreasing the p65 nuclear levels, suggesting the involvement of these pathways in the observed effects. The same 2-SC significantly increased the COX-2 expression, which may indicate a negative feedback loop mechanism of action. The properties of 2-SC may be of great value in the development of new therapies with improved efficacy and selectivity towards RA, and thus deserve further exploitation and evaluation to disclose the full potential of 2-SC.

14.
Eur J Med Chem ; 252: 115280, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36966653

ABSTRACT

Chalcones are bioactive molecules of natural and synthetic sources, whose physicochemical properties, reactivity, and biological activities are well-known among the scientific community. However, there are many molecules strictly related to chalcones with significantly less recognition like bis-chalcones. Several studies indicated that bis-chalcones have advantages over chalcones in specific bioactivities like anti-inflammatory activity. This review article describes the chemical structure and chemical properties of bis-chalcones, as well as the methods reported in the literature for the synthesis of these compounds highlighting the most recent developments. Finally, the anti-inflammatory activity of bis-chalcones is described, emphasizing the active structures found in literature and their mechanisms of action.


Subject(s)
Chalcones , Chalcones/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Docking Simulation
15.
Arch Toxicol ; 97(2): 405-420, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36424514

ABSTRACT

Silver nanoparticles (AgNP) are the most widely produced type of nanoparticles due to their antimicrobial and preservative properties. However, their systemic bioavailability may be considered a potential hazard. When AgNP reach the bloodstream, they interact with the immune cells, contributing to the onset and development of an inflammatory response. Monocytes and macrophages play a pivotal role in our defense system, but the interaction of AgNP with these cells is still not clear. Therefore, the main objective of this work was to assess the cytotoxic and pro-inflammatory effects induced by 5, 10, and 50 nm AgNP coated with polyvinylpyrrolidone (PVP) and citrate, in concentrations that could be attained in vivo (0-25 µg/mL), in human monocytes isolated from human blood and human macrophages derived from a monocytic cell line (THP-1). The effects of PVP and citrate-coated AgNP on cell viability, mitochondrial membrane potential, and cytokines release were evaluated. The results evidenced that AgNP exert strong harmful effects in both monocytes and macrophages, through the establishment of a strong pro-inflammatory response that culminates in cell death. The observed effects were dependent on the AgNP concentration, size and coating, being observed more pronounced cytotoxic effects with smaller PVP coated AgNP. The results showed that human monocytes seem to be more sensitive to AgNP exposure than human macrophages. Considering the increased daily use of AgNP, it is imperative to further explore the adverse outcomes and mechanistic pathways leading to AgNP-induced pro-inflammatory effects to deep insight into the molecular mechanism involved in this effect.


Subject(s)
Cytokines , Metal Nanoparticles , Humans , Monocytes , Silver/toxicity , Metal Nanoparticles/toxicity , Membrane Potential, Mitochondrial , Macrophages , Povidone/toxicity , Citrates/pharmacology , Citric Acid/toxicity
16.
Arch Toxicol ; 96(12): 3279-3290, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36104498

ABSTRACT

3,4-Methylenedioximethamphetamine (MDMA; "ecstasy") is a psychotropic drug with well-known neurotoxic effects mediated by hitherto not fully understood mechanisms. The Na+- and K+-activated adenosine 5'-triphosphatase (Na+/K+ ATPase), by maintaining the ion gradient across the cell membrane, regulates neuronal excitability. Thus, a perturbation of its function strongly impacts cell homeostasis, ultimately leading to neuronal dysfunction and death. Nevertheless, whether MDMA affects the Na+/K+ ATPase remains unknown. In this study, we used synaptosomes obtained from whole mouse brain to test the effects of MDMA, three of its major metabolites [α-methyldopamine, N-methyl-α-methyldopamine and 5-(glutathion-S-yl)-α-methyldopamine], serotonin (5-HT), dopamine, 3,4-dihydroxy-L-phenylalanine (L-Dopa) and 3,4-dihydroxyphenylacetic acid (DOPAC) on the Na+/K+ ATPase function. A concentration-dependent increase of Na+/K+ ATPase activity was observed in synaptosomes exposed to the tested compounds (concentrations ranging from 0.0625 to 200 µM). These effects were independent of protein kinases A and C activities. Nevertheless, a rescue of the compounds' effects was observed in synaptosomes pre-incubated with the antioxidant N-acetylcysteine (1 mM), suggesting a role for reactive species-regulated pathways on the Na+/K+ ATPase effects. In agreement with this hypothesis, a similar increase in the pump activity was found in synaptosomes exposed to the chemical generator of superoxide radicals, phenazine methosulfate (1-250 µM). This study demonstrates the ability of MDMA metabolites, monoamine neurotransmitters, L-Dopa and DOPAC to alter the Na+/K+ ATPase function. This could represent a yet unknown mechanism of action of MDMA and its metabolites in the brain.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Animals , Mice , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Synaptosomes/metabolism , Serotonin/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Dopamine/metabolism , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Levodopa/metabolism , Levodopa/pharmacology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Superoxides/metabolism , Methylphenazonium Methosulfate/metabolism , Methylphenazonium Methosulfate/pharmacology , Brain , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Adenosine/metabolism , Protein Kinases/metabolism
17.
Food Funct ; 13(14): 7930-7941, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35788613

ABSTRACT

Xanthones are oxygen-containing heterocyclic compounds that exhibit a wide range of biological and pharmacological properties. Some natural and synthetic derivatives have been identified for their antidiabetic profile, mainly as α-glucosidase inhibitors. However, studies concerning the inhibition of both carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase are scarce. Thus, in order to identify some of these dual-target antidiabetic agents, a series of new synthetic xanthones were evaluated together with their commercial parents mangiferin (4), α-mangostin (5) and γ-mangostin (6). The results showed that xanthones exhibited a systematic stronger inhibition against α-glucosidase rather than for α-amylase. Derivatives 2c, 3a and 3b, bearing one catechol moiety, were the most active inhibitors of α-amylase, while xanthones 2c, 3b and 3c were the most active against α-glucosidase activity, with IC50 values lower than 10 µM. These findings suggest that the substitution pattern of the xanthone scaffold modulated the inhibitory activity of these compounds, and some structure-activity relationships could be established for both assays. In addition, the type of inhibition was also studied, and the results indicate a competitive type of inhibition for α-amylase activity by xanthones 2c, 3b, 3c and γ-mangostin (6). On the other hand, non-competitive inhibition mechanisms can be ascribed for all xanthones 1-6 against α-glucosidase. The present work can open a promising area of research based on the design of novel xanthone derivatives, based on natural ones, for targeting key enzymes involved in glucose metabolism and therefore in the management of type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Xanthones , Carbohydrates , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Xanthones/pharmacology , alpha-Amylases , alpha-Glucosidases/metabolism
18.
J Inorg Biochem ; 234: 111879, 2022 09.
Article in English | MEDLINE | ID: mdl-35679744

ABSTRACT

Depigmenting properties of tyrosinase inhibitors (TAi) boosted the search for new compounds applicable in cosmetics. Kojic acid, a 3-hydroxy-4-pyrone, is the most studied tyrosinase inhibitor but undesirable side effects, like dermatitis, and unspecified mechanism led to its exclusion in several countries. To discover safer and more efficient TA, we evaluated tyrosinase inhibitory effect of twelve 3-hydroxy-4-pyridinones (3,4-HPO) in vitro and considering the two reaction steps of inhibition in mushroom tyrosinase enzyme. In parallel we performed molecular docking studies in human and mushroom enzymes. Ligands I6 and I11 were the most effective compounds considering their inhibitory activity in both reaction steps. Our studies revealed that I6 has a non-competitive and mixed type of inhibition for monophenolase and diphenolase activity, while ligand I11 showed a mixed and competitive inhibition type for each reaction step. Molecular Docking results indicated that ligands tend to bind the enzyme by coordinating directly with the binuclear cooper centre and highlighted the relevance of voluminous and non-polar substituents at R2 to avoid the binding of the ligands to the enzyme. The work clarifies the type of inhibition established for kojic acid and points out the differences found for the set of 3,4-HPO chelators studied as prospective tyrosinase inhibitors.


Subject(s)
Agaricales , Enzyme Inhibitors , Monophenol Monooxygenase , Agaricales/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Prospective Studies
19.
Arch Public Health ; 80(1): 142, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35590340

ABSTRACT

BACKGROUND: Injury remains a major concern to public health in the European region. Previous iterations of the Global Burden of Disease (GBD) study showed wide variation in injury death and disability adjusted life year (DALY) rates across Europe, indicating injury inequality gaps between sub-regions and countries. The objectives of this study were to: 1) compare GBD 2019 estimates on injury mortality and DALYs across European sub-regions and countries by cause-of-injury category and sex; 2) examine changes in injury DALY rates over a 20 year-period by cause-of-injury category, sub-region and country; and 3) assess inequalities in injury mortality and DALY rates across the countries. METHODS: We performed a secondary database descriptive study using the GBD 2019 results on injuries in 44 European countries from 2000 to 2019. Inequality in DALY rates between these countries was assessed by calculating the DALY rate ratio between the highest-ranking country and lowest-ranking country in each year. RESULTS: In 2019, in Eastern Europe 80 [95% uncertainty interval (UI): 71 to 89] people per 100,000 died from injuries; twice as high compared to Central Europe (38 injury deaths per 100,000; 95% UI 34 to 42) and three times as high compared to Western Europe (27 injury deaths per 100,000; 95%UI 25 to 28). The injury DALY rates showed less pronounced differences between Eastern (5129 DALYs per 100,000; 95% UI: 4547 to 5864), Central (2940 DALYs per 100,000; 95% UI: 2452 to 3546) and Western Europe (1782 DALYs per 100,000; 95% UI: 1523 to 2115). Injury DALY rate was lowest in Italy (1489 DALYs per 100,000) and highest in Ukraine (5553 DALYs per 100,000). The difference in injury DALY rates by country was larger for males compared to females. The DALY rate ratio was highest in 2005, with DALY rate in the lowest-ranking country (Russian Federation) 6.0 times higher compared to the highest-ranking country (Malta). After 2005, the DALY rate ratio between the lowest- and the highest-ranking country gradually decreased to 3.7 in 2019. CONCLUSIONS: Injury mortality and DALY rates were highest in Eastern Europe and lowest in Western Europe, although differences in injury DALY rates declined rapidly, particularly in the past decade. The injury DALY rate ratio of highest- and lowest-ranking country declined from 2005 onwards, indicating declining inequalities in injuries between European countries.

20.
Lancet Reg Health Eur ; 16: 100341, 2022 May.
Article in English | MEDLINE | ID: mdl-35392452

ABSTRACT

Background: Mental health is a public health issue for European young people, with great heterogeneity in resource allocation. Representative population-based studies are needed. The Global Burden of Disease (GBD) Study 2019 provides internationally comparable information on trends in the health status of populations and changes in the leading causes of disease burden over time. Methods: Prevalence, incidence, Years Lived with Disability (YLDs) and Years of Life Lost (YLLs) from mental disorders (MDs), substance use disorders (SUDs) and self-harm were estimated for young people aged 10-24 years in 31 European countries. Rates per 100,000 population, percentage changes in 1990-2019, 95% Uncertainty Intervals (UIs), and correlations with Sociodemographic Index (SDI), were estimated. Findings: In 2019, rates per 100,000 population were 16,983 (95% UI 12,823 - 21,630) for MDs, 3,891 (3,020 - 4,905) for SUDs, and 89·1 (63·8 - 123·1) for self-harm. In terms of disability, anxiety contributed to 647·3 (432-912·3) YLDs, while in terms of premature death, self-harm contributed to 319·6 (248·9-412·8) YLLs, per 100,000 population. Over the 30 years studied, YLDs increased in eating disorders (14·9%;9·4-20·1) and drug use disorders (16·9%;8·9-26·3), and decreased in idiopathic developmental intellectual disability (-29·1%;23·8-38·5). YLLs decreased in self-harm (-27·9%;38·3-18·7). Variations were found by sex, age-group and country. The burden of SUDs and self-harm was higher in countries with lower SDI, MDs were associated with SUDs. Interpretation: Mental health conditions represent an important burden among young people living in Europe. National policies should strengthen mental health, with a specific focus on young people. Funding: The Bill and Melinda Gates Foundation.

SELECTION OF CITATIONS
SEARCH DETAIL
...